

コンクリート構造物に対するウォータージェット

ウォータージェット工法を利用したコンクリート構造物の 補修技術に関する研究

Studies of Repair Methods of Concrete Structures by Water Jet Application

谷倉 泉*, 設楽和久*, 室井智文**, 野島昭二**

Izumi TANIKURA*, Kazuhisa SHIDARA*, Tomofumi MUROI**, Syoji NOJIMA**

Abstract

Recently, with increase of service term extension, concrete structures are subjected to various deteriorations. Adequate and durable repair methods are required to keep concrete structures in good condition, which become a main part of social capital essential to national daily life.

Water jet application has many superior advantages: Water jet application leaves a rough and clean surface, no micro cracks are introduced into the remaining concrete, and the reinforcing bar is undamaged. This study aims at establishing rational and durable repair method. The effectiveness of water jet application applied to surface treatment, removal of concrete, and its evaluation procedure, inspection, drilling method are discussed with followed field tests. The typical themes on this study are in the followings;

- ①Surface treatment method for the unification of exist and newly placed concrete,
- ②Development of the removal method of concrete and that evaluation procedure,
- ③Effective method for inspection and removal by water jet application to deteriorated concrete structures,
- 4 Concrete drilling procedure by water jet application for the purpose of detecting grouted portion in the sheath.

概 要

近年、コンクリート構造物の老朽化が進み、それらの構造物に変状が発生している。重要な社会資本であるコンクリート構造物を健全に維持管理していくためには、確実で耐久性の高い補修・補強技術が不可欠である。

本稿では、鉄筋やコンクリートをほとんど傷めずに施工できるウォータージェット工法の特徴を利用し、 劣化コンクリートに対する合理的かつ耐久性の高い補修技術を確立することを目的として実施した、新旧 コンクリート一体化のための表面処理技術、適切なコンクリートのはつり処理技術の開発とその評価手法、コンクリート構造物の変状部の点検・除去技術、ならびにPCグラウトの充填度評価のための 削孔技術に関する調査・試験・研究成果について述べる。

Key Words: Concrete Structure, Deterioration, Surface Treatment, Removal, Drilling

原稿受付日:2005年3月2日

* (社)日本建設機械化協会 施工技術総合研究所(〒417-0801 静岡県富士市大渕3154)

Japan Construction Method and Machinery Research Institute, Japan Construction Mechanization Association (3154 Obuchi, Fuji, Shizuoka 417-0801, Japan)

** 日本道路公団試験研究所(〒194-8508 東京都町田市忠生1-4-1)

Expressway Research Institute of Japan Highway Public Corporation (1-4-1 Tadao, Machida, Tokyo 194-8508, Japan)

1. はじめに

コンクリート構造物は永久構造物として十分な耐久性があると考えられていたが、近年、塩害、中性化、凍害などにより変状が生じ、耐荷力や耐久性の低下、コンクリート片のはく落などが一部のメディアでも報じられるようになってきた。

このうち、塩害のように塩化物イオンが鉄筋位置まで侵入して鉄筋腐食を生じ、それに伴うひび割れが著しい場合や、かぶり厚以上に中性化が進んで同様の変状が生じている場合には、劣化状態が軽微であれば電気化学的脱塩工法や再アルカリ化工法によってコンクリートの品質を改善することも可能である。しかし、ひび割れが著しい場合や構造物の剛性や耐荷力、耐久性に問題があるような劣化状態では、ひび割れ補修を行っても十分な耐力の回復は望めないため、鉄筋背面までウォータージェット工法でコンクリートをはつり取った後、ショットクリート(吹付け)工法などにより断面修復する方法が効率的で確実である。

実際に欧州では多くの国でこれらの補修工法が広く採用されているが、わが国とはコンクリートの配筋やかぶりなどの断面が異なり、それらの技術を直接導入するためには、はつり条件の設定など解決すべきいくつかの課題があった。

ウォータージェット工法はわが国においても長大橋の基礎掘削,地下連壁の切断など200~400 MPaの超高圧で利用されてきた実績がある。欧州のそれは一般に70~140 MPaで利用されているケースが多い。しかし,10年近く前に研究を開始した当初,これを鉄筋が密に配筋されたコンクリート構造物に適用したところ,鉄筋間の中間部が壺掘り状態となって鉄筋裏のコンクリートが除去できない技術レベルであり,欧州の技術をそのまま利用しても然りであった。

一方、トンネルや高架橋などのコンクリート構造物に数多く発生している変状対策においては、第三者被害を防止するため、はく落につながるコンクリート構造物の変状を見逃さないように発見して取り除くことが重要な課題となっている。しかしながら、コンクリート構造物に対する従来の点検では、近接目視および打音ハンマによる打音点検が主流であり、この方法は、効率が悪いうえに多くの経験を必要とし、確実性や時間的な面で合理的ではない。そこで、コンクリート片のはく落につながる浮きやはがれ部の点検と除去が同時かつ確実に行えるかどうか確認するため、健全部は残して脆弱部をはつり取るセレクティビティ性能を有すウォータージェット工法に着目し、その適用性を実験により探ることとした。

また、プレストレストコンクリート (PC) 橋では、内ケーブルの健全性を調査するため、PC グラウトの充填度を確認する場合がある。PC グラウトの充填度を評価する方法とし

て、各種非破壊検査方法が提案されているが、①検査可能な部材厚さの制限や配筋状況の複雑さによってPCグラウトの充填不足箇所の特定が容易でないこと、②PC鋼材の腐食状態を正しく把握できないために健全度の判定までは困難などの課題がある。これらの課題をクリアするためにはPC部材内のシースへ接近し、その内部を直接観察できればよいことから、配置された鋼材に損傷を与えることなく、シースにアプローチして点検する技術を開発する目的で、ウォータージェットの削孔性能に着目し、その適用性を探ることとした。重要な社会資本であるコンクリート構造物を健全に維持管理していくためには、適切な調査・診断結果に応じて、確まで耐な性の高い連絡・補強技術が不可なである。そのた

管理していくためには、適切な調査・診断結果に応じて、確 実で耐久性の高い補修・補強技術が不可欠である。そのためには、構造物がおかれている環境や建設時の施工条件を考慮したうえで、劣化機構を究明し、適切な対策を講じなければならない。

このようなことから、本稿ではコンクリート構造物に生じる各種の劣化・損傷に対する耐久性の高い補修技術を確立することを目的として実施した、①新旧コンクリート一体化のための表面処理技術、②ウォータージェット工法による適切なコンクリートのはつり処理技術、③コンクリート構造物の変状部の点検・除去技術、ならびに④PCグラウトの充填度評価のための削孔技術に関する調査、試験、研究成果について述べる。

2. コンクリート構造物の劣化・損傷実態

2.1 変状の種類と原因

コンクリート構造物に現れる変状には、建設時の初期欠陥など、明らかに原因が特定できるものもあるが、一般には同じ種類の劣化の現象に対して複数の劣化機構が存在したり、複数の劣化の現象が重複して現れたり、あるいは複数の劣化機構が同時に作用して複合劣化を生じさせるなど、劣化の種類と原因は非常に複雑である。このため、コンクリート構造物に発生した表面的な劣化の現象だけで劣化機構を特定することは容易でなく、複数の調査結果の組み合わせにより劣化機構を特定することになる。以下に代表的な劣化・損傷原因についての概要を述べる。

2.2 塩害

塩害とは、コンクリート中に侵入した塩化物イオンが鋼材に作用して不動態被膜を破壊し、酸素と水の供給によって腐食した鋼材の膨張圧によりひび割れが発生することをいう(Fig.1)。塩害の原因としては、①海砂の使用、②凍結防止剤の散布、③海水の飛沫・飛来塩分などが挙げられる。対策としてはこれら有害な塩分量を含む断面を取り除く(はつり)、脱塩処理する、化学的反応を抑えるために電気防食を行うなどの方法により、構造体の耐荷力を確保する必要がある。すでに塩分が深くまで入り込み、ひび割れなどの損傷

Fig.1 Chloride induced deterioration.

が著しい場合は、鉄筋の背面までコンクリートを除去し、 断面修復することが耐久性を確保するうえで重要である。 これを行わないと、耐荷力などの低下が問題となり、最悪の 場合、架替えなどにより莫大な費用がかかることになる。

2.3 中性化(炭酸化)

健全なコンクリートは強アルカリ性で、pH値は12~13である。コンクリート表面から大気中に含まれる二酸化炭素 (CO₂)が侵入すると、コンクリート中の水酸化カルシウムと 反応し、炭酸カルシウムを生成し、中性化が起こる。水セメント比が大きくなると進行しやすい。中性化がコンクリート内部へと進展し、鉄筋位置でのpHが11以下になると、鉄筋の不動態被膜が破壊され、鉄筋は酸化し錆を発生させる。鉄筋は錆びると約2~3倍の体積膨張を起こし、これによる膨張圧がコンクリート表面のひび割れやはく離の原因となる (Fig.2)。防止策としては、水セメント比を小さくして密実なコンクリートを施工し、十分な養生を行うことである。補修は、再アルカリ化を行うか、中性化している部分をはつって断面修復を行うなどの方法がある。

2.4 凍害(凍結融解)

凍害とは、コンクリート中の水分が凍結融解を繰り返すと、凍結するときの体積膨張(約9%)によって、ひび割れが発生したり、表面がはく離して劣化する現象をいう(Fig.3)。凍結融解が繰り返し発生すると、コンクリートの劣化は表面から次第に内部に進む。補修は、劣化・損傷している部分をはつり取り、断面修復を行う。

2.5 アルカリ骨材反応

アルカリ骨材反応とは、コンクリート骨材中の反応性鉱物とセメントペースト中のアルカリとが反応して反応生成物(アルカリシリカゲル)が生じ、ゲルの吸水膨張作用によってコンクリートにひび割れを発生させるほか、場合によっては内部の鉄筋を破断に至らしめる現象をいう。劣化の特徴として、格子状や亀甲状のひび割れが多く見られる(Fig.4)。

アルカリ骨材反応は、①反応性骨材の使用、②水の存在、 ③セメントによる高アルカリの3つの条件がすべて揃って 発生する。したがって、対策の基本は、これらのいずれかの 障害を取り除くことである。

Fig.2 Deterioration is caused by carbonation.

Fig.3 Freeze-thaw reaction.

Fig.4 Alkali-aggregate reaction.

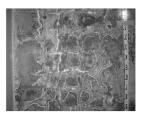


Fig.5 Fatigue damage.

2.6 疲労

疲労が問題となるのは、海洋構造物を除けば、主に橋梁のRC床版が対象となる。近年の交通量の増大や過積載車などの大型車両の通行は、RC床版にとって過酷な荷重条件となっている。床版の疲労損傷が進展する場合、下面の主鉄筋方向に生じた1方向ひび割れが、やがて橋軸方向(配力鉄筋方向)のひび割れを伴った2方向ひび割れとなり、これが上下面につながった貫通ひび割れに進展する。これと同時に車

両通過時のすりみがき作用で急激にひび割れ幅が拡大し、床 版剛性が低下する(Fig.5)。

床版上面からの補修方法としては、劣化部をウォータージェットや路面切削機などによってはつり取り、上面増厚を行う方法がある。下面からの対策としても劣化部をウォータージェットなどによってはつり取った後、吹付けコンクリートなどにより下面増厚する方法などがある。

3. ウォータージェット技術の利用

3.1 概要

中性化や塩害、疲労などによって変状を生じているコンクリート構造物を補修するうえでは、脆弱化したコンクリートや塩化物イオンなどの劣化因子を含んだコンクリートの除去(ここではこれを「はつり処理」という)が必要となることが多い。

また、耐震補強や拡幅など既設コンクリートに新たなコンクリートを打継ぎ、新旧コンクリートを一体化させるためには、確実な打継ぎ面の処理(ここではこれを「表面処理」という)によってレイタンスなどを取り除き、表面を清浄にすることが最も重要である。

ウォータージェットは、はつり、研掃(表面処理)、削孔、 切断など多くの用途に対し、鉄筋やコンクリートをほとんど 傷めずに施工できる特徴を有している。しかし、目的に応じ てノズルやシステムを選定するとともに、条件設定を適切に 行わなければ期待する成果は得られない。さらに、ノズルを 取り付けるロボットの操作方法やオペレータの技能によっ てもおのずと結果は異なってくる。

次章以降では、このようなウォータージェットの特徴を活かして改良、開発した技術およびその性能の評価手法について述べる。

3.2 ウォータージェット工法の特徴

ウォータージェットは、Fig.6 に示すように、高圧ポンプで昇圧した水を直径 $0.5\sim3$ mm 程度の小径の穴 (ノズル) から音速 (340 m/s) もしくはそれ以上の速度で噴射して得られる細噴流である。この水噴流が対象物に衝突したときに生じるスタグネイションプレッシャー (せき止め圧) や水くさび作用などの利用により、コンクリートのはつりや削孔が可能となる。

ウォータージェット技術は、20世紀後半より製造業、食品加工、漁業、医療などの各分野へ利用されてきており、建設分野では地盤改良、杭打設、コンクリート切断などが主な応用技術であった⁽¹⁾。ウォータージェットがはつりに用いられるようになったのは1980年代後半からで、比較的新しい技術といえる。

ウォータージェット技術の特徴としては,

①従来のように大型のハンドブレーカーの使用による鉄筋

Fig.6 Circular nozzle and water jet robot.

損傷やコンクリート表面のひび割れを生じさせないこと ②健全で清浄なはつり面への打継ぎによって新旧コンクリートの一体化が図れること

③機械化,ロボット化によって人力施工が困難な部位での施工が可能になること

など、確実な補修技術の実現および施工の合理化が図れる点などが挙げられる。一方で、水処理や騒音対策、コスト面などで、よりよい技術改良や改善が待たれている。

はつりに関する実施工においては、要求性能や経済性を考慮し、ノズルの種類やはつり条件を調整して用いられている。 水量、水圧、スタンドオフ、ノズルの角度と振り角などの設定条件によって、コンクリートのはつり性能は大きく異なる。 一般的なウォータージェット処理の適用範囲は次のようなものである。

·洗浄·表面処理:水圧 5~200 MPa,

流量 10~100 l/min

·はつり処理: 水圧 70~200 MPa,

流量 90~250 l/min

·削孔: 水圧 60~150 MPa,

流量 30~100 l/min

このように高圧水を噴射し、そのエネルギーにより表面処理、はつり処理、削孔などを行うウォータージェット工法は、その操作方法や条件設定を適切に組み合わせることにより、目的とする施工が可能なうえ、ロボット化も容易であることから、コンクリート構造物の補修・補強技術への適用性も高いといえる。

4. 表面処理技術に関する研究

4.1 概要

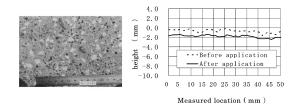
従来、既設コンクリート構造物に新しいコンクリートを打継いで一体化させる目的で、ブレーカーや各種ブラスト工法が用いられてきた。しかしながら、人力施工によるブレーカーでは、コンクリート表面にヘアクラックを生じるなどの問題が生じて、補修後に再劣化が見られるケースもある。また、サンドブラストやスチールショットブラスト、そのほかのブラスト工法による効果については、ウォータージェットと比較したケースは見られない。

このようなことから、ウォータージェット工法の有効性を確認するためには、これらの各種工法を適用した打継ぎ目の付着試験で比較評価するのが妥当と考え、一連の試験を実施した⁽²⁾。その成果を以下に述べる。

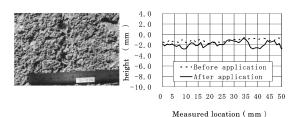
なお、この表面処理試験では、近年一般的に使われている ハンドガンおよび揺動式ノズルは使用しておらず、X、Y 方 向の移動が自由にできるフレームに取り付けた回転式ノズ ルのデータを採取した。

4.2 試験体と表面処理の工種

道路橋床版を模したコンクリート版 (縦1 m×横1 m× 高さ0.2 m)を作製して各種の表面処理を施し、表面形状の 観察と計測を行うこととした。新コンクリートの打設 (厚さ 10 cm) は下向きで、打継ぎ面を十分に清掃し表面乾燥飽水 状態で実施した。また、品質の変動による試験結果への影響 を避ける目的で、新コンクリートは十分に締固めた。本試験 に用いた表面処理の工種をTable 1 に示す。


4.3 試験結果と考察

4.3.1 表面処理後の外観,表面形状


外観写真とレーザ変位計による計測結果のうち、特徴的なものについて、その表面の一部をFig.7に示す。

①人力施工

ディスクサンダーの場合, 処理前より表面が滑らかに仕上

D2 Blasting treatment : steel shotblasting, $Projection \ density \ 150 kg/m^2$

I2 Water jet method: Rotary nozzle,
Water pressure 100MPa, flow rate 9.6 l/min,
energy density 0.76kWh/m²

Fig.7 Measurement result of outward appearance and prepared surface formation.

Table 1 Work items for surface preparation.

Treatment for surface preparation	Symbol of test specimen	Condition									
Manual treatment	A	Disk sander Electrically operated									
	В	Pick hamn	ner	Electrically operated							
	С	Hand breaker		Compressed air							
Blasting treatment	D1	Steel shotblasting		Projection density	50 kg/m ²						
	D2				150 kg/m ²						
	D3				250 kg/m ²						
	E1	Sandblasting Dry blasting		Jet density	10 kg/m ²						
	E2				20 kg/m ²						
	E3				30 kg/m ²						
	F				4 kg/m ²						
	G1				50		3.0		3		3.13
	G2	Rotary Maltiple Nozzle		Water pressure	100	· Flow	4.2		2		3.07
	G3				150		5.2		1		3.01
	H1	Flat Spray Nozzle			100		6.7		1		2.66
	H2				150		8.3		1		2.68
	I1				50		6.8	Number of	6	Energy	1.53
Water-jet method	I2	Rotary Nozzle			100		9.6	applications	1	density	0.76
	I3	(high-pressure)			100	Tate	9.6		2	delisity	1.52
	I4			MPa	100	l/min	9.6	Number of	4	kWh/m²	3.05
	I5	with 1 nozzle			150		11.8	passes	1		1.49
	I6				200		13.6		1		1.51
	J1	Rotary Nozzle	4 nozzles		70		77.0		_		
	J2	(low-pressure)	2 nozzles		66		22.0		1		2.20

がったが、処理深さも浅く、レイタンス層の除去が十分にできない。一方、ピックハンマーとハンドブレーカーで処理したものは、表面の凹凸が大きく不規則であり、骨材も破砕されていた。また、ハンドブレーカーの方が、より表面の凹凸と処理深さが大きく、表面ではひび割れの発生が確認された。②ブラスト工法

ドライブラストを除けば、処理面には粗骨材が点在して現れ、セメントペーストとともに骨材表面が研掃されていた。 このため表面の凹凸は小さく、滑らかであった。

③ウォータージェット工法

水を噴射するノズルの形式、水圧、パス回数によって、表面の凹凸に差が見られた。凹凸が小さい場合は、噴流が骨材 周囲のセメントペースト分のみを除去し、凹凸が大きい場合 は、噴流がセメントペーストとともに骨材も除去されている。

4.3.2 付着力

Fig.8 は、付着強度の最小値、最大値、平均値をまとめた ものであり、表面処理方法で結果が大きく異なった。

①人力施工

人力施工の場合、ほかのブラスト工法やウォータージェット工法と比べて付着力は小さく、それらの最小値は処理を行わずに新コンクリートを打継いだ無処理(K)の場合に比べても小さい、ディスクサンダーでは表面の凹凸や処理深さが小さく、表面処理が十分でなかったこと、ビックハンマー、ハンドブレーカーではノミの打撃によるヘアクラックの影響が表れたものと考えられる。

②ブラスト工法とウォータージェット工法

スチールショットブラストの投射密度が50 kg/m² (D1) の時と,ウォータージェット工法の扇形ノズルの水圧が100 MPa (H1) の時,ほかの条件に比べて付着強度の最小値が小さく,1.5 N/mm²を下回った。これらは、処理深さが0.5 mm以下と小さく,表面処理が十分できなかったためと推定される。なお,表面の面積増加率と平均付着力の関係についても分析を行ったが、処理面の凹凸と付着性の関係は小

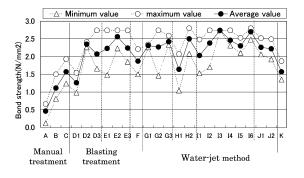


Fig.8 Direct tensile strength test.

さく,一概に凹凸が大きいほうが付着力も大きいとはいえなかった。

4.3.3 まとめ

- ①ウォータージェット工法を用いた場合は一体化に適した 処理面が得られ、打継いだコンクリートと良好な一体化性 状が保たれる。一方、ブレーカーなどを用いた人力施工で はコンクリート表面に損傷が生じ、十分な付着力が得られ ないことが明らかとなった。
- ②打継ぎによって新旧コンクリートの一体化を図るうえでは、1~2 mm以上の深さまで表面処理を行えば十分な付着力(1.5 N/mm²以上)を確保でき、必ずしも表面に凹凸をつける必要はない。新旧コンクリートの打継ぎにおいて重要なのは表面処理の方法であり、ウォータージェットはそれを可能にする有効な手法となることがわかった。すなわち、耐震補強や各種劣化対策としてのコンクリートの巻立て、表面被覆の事前処理としてもその適用範囲を広げていくことが可能と思われる。

5. はつり処理技術に関する研究

5.1 概要

コンクリートをブレーカーではつり処理した場合の損傷事例をFig.9、Fig.10に示す。コンクリート表面に大小さまざまなひび割れを生じるだけでなく、その位置が不明であるために鉄筋にも5~10 cm間隔で大きな穴をあけている。前述したように、ウォータージェットではこのような損傷を生じさせることがまったくないので、構造物に優しく、耐久性の高い補修が可能となる。

ウォータージェットを利用した従来のはつり技術では、鉄 筋裏まで平坦にはつれなかったため、ノズルの制御方法(振 り幅や角度)、水量、水圧、スタンドオフなど、諸条件を変え てその可能性を探ることとした。はつり処理で必要とされ るのは、高濃度の塩化物イオンを含む鉄筋裏側のコンクリー トまで均一に除去する性能(平坦度)と、脆弱な部分ははつ り取って健全な部分ははつり取らずに残すことのできる性能 (セレクティビティ)である。

標準的な配筋、コンクリート強度の模擬試験体による多くのはつり試験の結果、揺動式ノズルを備えたはつりロボットを用いて、このような性能を満足するはつりが可能であることを実証できた。しかし、ノズルにはその種類の多さだけでなく、制御方法にも回転式、揺動式、交差式など各種の手法があり、これらのはつりシステムにおいても十分なはつり性能が確保できるかどうか確認する必要があった。

欧州で用いられている既住の研究調査結果を踏まえ、本節ではわが国の構造物の実状に合わせた試験体の作製およびこれを用いたはつり試験による性能評価手法についてとりまとめた結果を述べる。

Fig.9 Cracks on the treated surface by handbreaker.

Fig.10 Damage of re-bars by handbreaker.

5.2 欧州におけるウォータージェット技術の利用

補修先進国といわれるヨーロッパでは、ウォータージェットはつり装置として開発されたロボットが実用化の域に達しており、コンクリート構造物の補修に広く用いられている。最も早くはつりロボットを開発したスウェーデンやノルウェーでは、ウォータージェット工法の施工機械と技術者の認定制度が確立されており、これらの認定基準に合格した施工機械、技術者のみがウォータージェット工法の利用を認められている③。コンクリート構造物の補修においては、ブレーカーは鉄筋および健全なコンクリートへ及ぼすダメージなどの問題から、1998年に定められた補修基準(Bridge code 88)⑷において使用が禁止されており、電動ピックなどの超軽量工具とウォータージェットとの併用は許容している。例年、コンクリート構造物の診断結果をもとに、ライフサイクルコスト(LCC)を考慮した補修が計画的に行われている。

欧州の多くの国では地震がないため、鉄筋径がわが国よりも細く、かつピッチも広い。このため、はつりロボットを用いて比較的容易に鉄筋裏までのはつりを行っている。このほか、スイスでは、ブレーカーによる施工を全面的に禁止しており、ロボットおよびハンドガンによるウォータージェッ

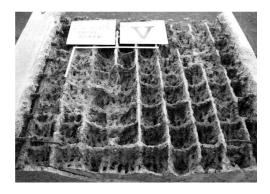


Fig.11 The shape of the treated surface (Waving nozzle, NG).

ト工法を適用箇所ごとに使い分けて施工している。イギリス、イタリアにおいても補修・補強におけるはつりには基本的にウォータージェットが利用されている。また、一般にコンクリートの打継ぎ界面を鉄筋位置とすることは疲労強度を低下させるとの研究成果から、RC床版の打継ぎ界面は鉄筋位置を避けている。

わが国におけるウォータージェット工法による補修は、短期的には現状のブレーカーなどの在来工法に比較して施工費用が割高となる傾向にあるが、長期的にみると健全な処理面と高い付着力の確保により、耐久性の高い補修が可能になるものと考えられる。

5.3 わが国におけるはつり技術の開発

ウォータージェット工法をコンクリート構造物のはつり に適用するに当たっては、目的とする補修が可能な技術レベルにあるかどうか確認する必要がある。しかし、前述したようにはつりシステムやはつり条件が多種多様であるため、すべてのパラメータについて試験することは難しい。

そこで、欧州において最も多く利用されている揺動式ノズルを備えたはつりロボットを代表として、その標準仕様におけるはつり性能を確認することとした。この時使用した試験体は、床版などの標準的な諸元として、鉄筋径D19 mm、配筋ピッチ125 mm、かぶり30 mmとした。この試験体に対し、一定の投射エネルギーで下向きのはつりを行った結果、Fig.11に示すように鉄筋背面がまったくはつれず、壺掘り状態のはつりしかできなかった。その理由として、ウォータージェットは水噴流の動圧や衝撃、くさび作用でコンクリートをはつるものであるが、ノズルを揺動させる振り角や、ノズルが取り付くランスの傾斜角を適切に設定しなければ鉄筋裏まで水噴流が到達しなかったためと考えられる。さらに、エネルギーの大きさを左右する水量や水圧、ならびにスタンドオフ(ノズル先端とコンクリート表面の距離)もはつり性能に大きく影響する。

そこで、これらのパラメータについてさまざまな組み合わせではつり性能の改善を図った。その結果、次のようなことがわかった。

- ①揺動式はつりロボットは、おおむね $50\sim150$ MPa、水量 $100\sim200$ l/min で使用されているが、この条件に適した ノズルの選定が必要である。
- ②水量、水圧、スタンドオフ、ノズルの振り角、および移動速度、ランス角度、1ステップごとの移動距離などを適切に設定することにより、鉄筋裏のコンクリートまで平坦にはつることが可能となる。ただし、この場合1回のはつり操作で鉄筋裏まではつり取ることは難しいため、同様の操作を2、3回行う必要がある。

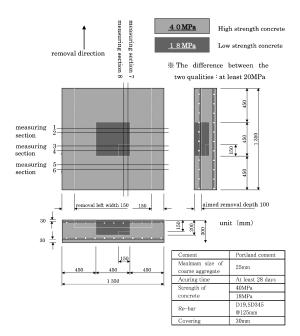


Fig.12 Test specimen.

Fig.13 The shape of the treated surface.

一方、コンクリート構造物の補修では劣化部をきれいに除去する必要がある。この際、健全部はなるべくはつらず、劣化部のみ除去できることが望ましい。このようなことから、Fig.12に示すような配筋およびコンクリート強度で構成される試験体を考案し、はつり深さの確保と劣化部の除去の2つの要求性能を満足するはつり技術について試験・検討を行うこととした。その結果、上述したようなパラメータの組み合わせを変えることにより、Fig.13のように良好なはつりを可能とすることができた。この時のはつりにおける制御因子の設定値は公表できないが、参考までに欧州における設定値をTable 2に示す。

日本道路公団では、これらの成果を活用し、「ウォータージェット工法のはつり処理性能試験」(5)を定めている。この性能試験における評価基準はTable 3のとおりである。劣化部を取除くセレクティビティ、および鉄筋裏まで平坦にはつりとる平坦度の2つの要求性能について、はつり装置とオペレータの組み合わせによる技能を評価することとしてい

Table 2 Setting condition of water jet robot (Samples of Sweden).

Control settings	CONJET (Waving pattern)		
Jet pressure (bar)	610		
Diameter of nozzle (mm)	3.5		
Quantity of water (l/min)	178		
Traveling speed (m/min)	4.5		
No. of waving (times/min)	180		
Width of Step (mm)	25~30		
Robot traveling speed (cm/min)	12.6		
Efficiency (min/m²)	24		
No. of removal of concrete	3		
Stand off (mm)	15~20		

Table 3 Evaluation standard for removal of concrete.

	Items	Standard (An interim standard)		
Selectivity	Removal left at the ends	150 mm±25 mm		
	Suitability ratio	Low strength above 60%		
	(Removing ratio)	High strength under 30%		
	Pit	Less than 3		
	Removal left	No contact		
	Removarien	with reinforcing bars		
	Length of ridges	Under 900 mm		
Regularity	Roughness of surface	At a pitch of 62.5 mm,		
		with a difference		
		above 7 mm		
	Depth of removal	10 mm±2 mm		

る。Fig.13 は理想的なはつり面であるが、この時の表面形状をレーザー変位計で測定した結果は、Fig.14の[領域I]のとおりである。

現在、このはつり性能試験に合格したはつり装置およびオペレータによる補修工事が全国で行われるようになってきている。しかし、設定条件によっては、はつりの結果が大きく異なるため⁶)、現場に適したはつりを行うためには、はつり装置、高圧ホース、ポンプのような設備システムだけでなく、施工対象とする構造物、変状の特徴、ならびに施工の安全性などについて幅広い知識が必要である。

コンクリート構造物の補修に利用されているウォータージェット工法の施工対象も、PC桁、RC床版、下部工など広範囲に及んできている。Fig.15は、凍結防止剤散布による塩害で劣化したRCホロースラブを、ウォータージェットではつっている状況である。はつった部分の断面修復には吹付けコンクリートが用いられた。なお、劣化部が点在したり、桁端の狭隘な箇所のはつりにはハンドガンの使用も有効である。

Appraisal		Selectivity				
standard		Good(Pass)	NG			
		[Category I]	[Category II]			
		Selective and regular removal	No selective but regular removal			
	Good		only			
	(pass)					
Regularity	NG	[Category III] No regular but selective removal only	[Category IV] Neither selective nor regular removal → Not applicable			

Fig.14 Requirements of water jet application.

Fig.15 Removal of slab by water jet robot.

6. 点検・除去技術に関する研究

6.1 概要

ここでは、従来のコンクリート構造物の打音点検に替わる 方法として、浮きやはがれが生じている箇所の点検および除 去を同時に可能とする適切なウォータージェットの処理条 件を見出す目的で、ハンドガンを用いた実験・研究を行った。 実験では、はく落防止対策の事前処理の対象とするコンクリート表面の浮き、はく離、脆弱部などの変状部の検出方法として有効かどうか確認するため、変状部を再現したFig.16に示す模擬試験体に対して、ノズル種類や制御条件を変えてウォータージェット照射を行い、変状部の検出に対する処理効果を調査した(*)。なお、変状部が見つかれば、断面修復や 繊維シート貼付けなどによるはく落防止対策(*)が実施されるが、この詳細は省略する。

6.2 実験結果と考察

ここでは実験した各種ノズルの中から、最も有効な成果が得られた1穴回転ノズルについてのみ述べる。1穴回転ノズルにおけるエネルギー密度と除去率の関係をFig.17に示す。ここで、変状部の除去率は、目視および打音点検で確認した変状部の面積に対して、ウォータージェットによって除去した面積の比である。

Fig.17より、表面処理に必要なエネルギー密度でウォータージェットを照射した場合、変状部のかぶりにかかわらず、変状部の除去率は20~40%程度であった。ここで、ウォータージェットの照射で除去されなかった変状部分は、点検ハンマにより浮きと判断できるものの、容易に叩き落せる状態ではなかった。

さらに、健全部の損傷を許容することを前提に、1穴回転 ノズルによる照射エネルギー密度を2倍とした場合、かぶり

thickness of cover 10mm

Fig.16 Surface treatment by water-jet (Rotary nozzle with 1 nozzle, 50 MPa, 19.2 //min).

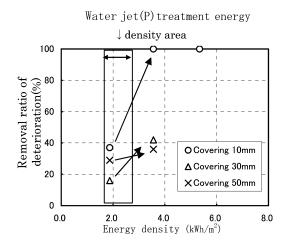


Fig.17 Energy density and removal ratio (Rotary nozzle with 1 nozzle).

が10 mmであれば、変状部を100%除去することが可能であった。しかし、変状部のかぶりが30、50 mmと深くなってくると、エネルギー密度を2倍にしても、端部の薄い部分が削り取られるのみで、変状部をすべて除去することは不可能であった。これはかぶりが深い場合に、浮きやはがれが生じていない残りの部分がコンクリート基部と強固につながっていたり、鉄筋にコンクリート片が絡んでいたためであり、表面的な処理のみでは完全にはく離させることは困難であった。

そこで投射エネルギーが少ない場合には、変状部を顕在化させた後の施工を想定し、1 穴直射ノズルを用いて変状部を集中的に照射したところ、変状部のかぶり深さ50 mmであっても100%除去することが可能であることがわかった。

ウォータージェット工法を用いたコンクリート構造物の 浮き・はく離部の点検・除去に関する実験で得られた成果 をまとめると、次のとおりである。

- ①鉄筋の腐食膨張により発生した変状は、表面処理程度のエネルギー照射を行うウォータージェット工法の適用により、はく落の可能性が高い変状(かぶりが浅く、10 mm程度)は除去できる。
- ②はく落の可能性が低い変状(かぶりが深く,30~50 mm) については、変状部分をすべて除去することは困難であるが、変状部分を顕在化させることは可能である。
- ③変状部を除去できない場合でも、顕在化させた後で集中的 にウォータージェットを照射すれば、変状部を100%除去 することが可能である。
- ④浮き,はく離部のはく落の恐れがある部位には、Fig.18 に示す2段階の照射を行うことにより、除去が可能である。
- ⑤フラットな作業環境や均一な断面に対しては、ロボット

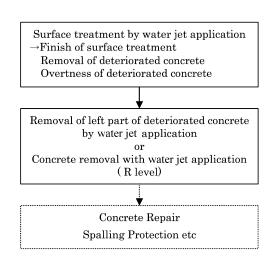


Fig.18 Inspection flow by water jet application.

(機械把持)の開発が効率的かつ経済的と考えられる。

7. 削孔技術に関する研究

従来の一般的な削孔方法は、コンクリート用コアカッタなどが用いられていたが、実構造物の複雑な配筋状態、非破壊検査による鉄筋位置の検出限界、ヒューマンエラーなどが原因で鋼材(鉄筋、PC鋼材)を損傷する場合がある。また、このようなトラブルを防止するために、電気的な短絡を利用して鋼材に接触すると削孔機械が停止する装置を付加した削孔方法もあるが、PC鋼材がシースに接触している場合には鋼材を損傷させるなどの課題もある。

そこで本研究では、コンクリートや鋼材に損傷を与えないでシース内を点検する可能性を探るため、ウォータージェットを利用し、PC桁のシースに近接した削孔実験を行うこととした。なお、削孔がシースに到達後は、点検とグラウトの再注入・充填を行ってPCグラウト部の補修を行うことを想定しているが、この詳細は省略する。

使用されていた高速道路の本線橋から撤去したPC桁を用いた削孔実験 (Fig.19) の結果,以下のことが明らかとなった⁽⁹⁾。

- ①コンクリート部材および鋼材を損傷させることなく削孔 することが可能である。削孔径は最小で30 mm程度まで 可能であった。
- ②削孔後は内視鏡などによるシース内の観察により、PC グラウトの充填度およびPC鋼材の健全性の調査が可能で ある。
- ③今実験システムを適用する場合のウォータージェットの 適切な水圧は60~150 MPaであった。水圧が200 MPa を超える高水圧を使用した場合、端部でコンクリートに圧

Fig.19 Drilling of PC bridge.

壊が生じる恐れがあることがわかった。

- ④削孔能力はコンクリートの使用骨材の影響が大きく、川砂利は砕石よりも削孔能力が低下する傾向がある。
- ⑤水圧および水量の設定が削孔能力に及ぼす影響は小さい。 したがって、構造物に与える影響を考慮すると適切な水圧 範囲の中でも低い水圧の設定が望ましいと考える。
- ⑥PC グラウトの充填度の確認および削孔内での作業を考慮 すると、目標削孔径は \$0 mm 程度が適当であり、並列し て2 カ所の削孔を行うと合理的である。

8. まとめ

本研究において,ウォータージェット工法の表面処理,は つり処理,変状部の点検・除去,削孔性能に関し,次のよう な成果が得られた。

- (1) コンクリート構造物の表面処理およびはつり処理をウォータージェット工法により行った場合,打継面の付着力など新旧コンクリートの一体化性状は,他工法に比べ非常に良好である。
- (2) ブレーカーなど、処理面に打撃力を与える従来の処理方 法では、コンクリート表面にひび割れを生じ、打継ぎ面 の付着力は低下する。また、鉄筋も著しく損傷させる。
- (3) ウォータージェット工法を用いたはつり処理では、施工 機械の仕様や制御方法、はつりの設定条件などに応じて 得られる処理面の形状が大きく異なる。また、機械を操 作するオペレータの知識や技量、経験によっても、その 結果は大きく左右される。
- (4) 実構造物を模した均一な試験体のはつり試験を行うことにより、ウォータージェット工法によるはつり処理性能の定量的な評価が可能となった。
- (5) 変状部の点検・除去に関しては、はく落につながる恐れ のある浮きやはがれ部の点検と除去が可能であり、従来 の近接目視や打音点検に比べて効率良く作業を行うこ とが可能である。

(6) PC 部のシース内部のグラウト点検は、ウォータージェット工法を用いた削孔を行うことにより、コンクリートや鋼材を傷めずに調査できる可能性が高い。この場合の削孔径は30 mm まで小さくできる。

9. おわりに

本研究は、コンクリート構造物に生じる各種の劣化・損傷 に対し、ウォータージェット工法を利用した合理的な点検・ 補修技術に関する試験・研究を行ったものである。

その結果、コンクリート構造物の新旧コンクリート一体化のための表面処理技術、劣化部のはつり処理技術、変状部の点検・除去技術、ならびにPCグラウトの充填性評価のための削孔技術としてウォータージェット工法を適用することは、さらなる耐久性向上に向けて有効な手段であることが確認できた。今後ははつり深さの管理や、コスト縮減に向けた施工の合理化、都市内における騒音の低減、処理水の回収と水処理技術の効率化などを図り、ウォータージェット工法のさらなる性能向上を図っていきたいと考えている。

コンクリート構造物の補修・補強のニーズは今後ますます増加すると思われる。ウォータージェットではつった後の断面修復の方法としては、吹付けコンクリートや高流動コンクリート打設などによる施工が挙げられ、一連の断面修復方法に関する手引き書をまとめる予定である。一方、施工コストに関しては課題が多いと考えている。優れた補修技術を幅広く普及させるためには、今までの施工実績を考慮したうえで、施工コストのミニマム化が必要である。

ここで紹介したようなウォータージェット工法を利用した補修技術が、安全で耐久性の高い維持管理システムを構築していくうえでの一助となればと考えている。

謝辞

本研究は、「新旧コンクリート構造物の一体化に関する検討会(座長 日本大学理工学部土木工学科 山﨑 淳 教授)」ならびに「ウォータージェットによるコンクリート構造物の点検・補修検討会(座長 関東学院大学工学部土木工学科 出雲淳一教授)」を設置し、その検討内容を反映しながら進めたものであり、座長はじめ検討会メンバーより貴重なご指導、ご助言をいただいた。また、実験に当たっては、日本ウォータージェット施工協会、(社)プレストレスト・コンクリート建設業協会にご協力いただいた。ここで関係者の皆様には誌面を借り、深謝の意を表すものである。

参考文献

- (1) 八尋暉夫, 最新ウォータージェット工法, 鹿島出版会 (1996).
- (2) 紫桃孝一郎、上東 泰、野島昭二、吉田 敦:ウォータージェット技術を利用した新旧コンクリート構造物の一体化処理、

- コンクリート工学, Vol.38, No.8, pp.40-54 (2000).
- (3) 2000, 2001 欧州土木構造物補修・補強調査 報告書, 社団 法人 日本建設機械化協会 建設機械化研究所 (2001, 2002).
- (4) Bridge code 88, 7. MAINTENANCE, REPAIR AND STRENGTHENING, Swedish National Road Administration, Road and Bridge Design Department Bridge Technology Section (1988).
- (5) 日本道路公団, 日本道路公団試験方法 (2004).
- (6) 谷倉 泉, 設楽和久, 上東 泰, 野島昭二: ウォータージェット工法を用いたコンクリート構造物のはつり処理性能試験, 日本ウォータージェット学会, 第16回研究発表講演会 論文集, pp.53-62 (2002).
- (7) 室井智文, 野島昭二, 谷倉 泉, 設楽和久: ウォータージェット工法を利用したコンクリート構造物のはく落対策と削孔技術, 日本ウォータージェット学会2004年度 ウォータージェット技術年次報告会, pp.65-74 (2004).
- (8) 日本道路公団, 構造物施工管理要領 (2004).
- (9) 野島昭二、菅野昇孝、上東泰、紫桃孝一郎: PC グラウトの 補修技術の開発、コンクリート工学、Vol.41、No.11、pp.31-43 (2003).

執筆者紹介

谷倉 泉 Izumi TANIKURA (社) 日本建設機械化協会 施工技術総合研究 所 研究第二部 次長 専門分野:橋梁工学 1972 年長岡技術科学大学大学院修了 同年建設機械化研究所入社。2003 年より現 職。(建設機械化研究所は2002 年11 月より 施工技術総合研究所に改称)

設楽和久 Kazuhisa SHIDARA (社)日本建設機械化協会 施工技術総合研究 所 研究第二部 主任研究員 専門分野:橋梁工学 1987 年宇都宮大学工学部土木工学科卒業 同年建設機械化研究所入社。1997 年より 現職。

室井智文 Tomofumi MUROI 日本道路公団試験研究所 橋梁研究主幹 専門分野:橋梁工学 1974 年長崎大学工学部土木工学科卒業 同年日本道路公団入社。2003 年より現職。

野島昭二 Syoji NOJIMA 日本道路公団試験研究所 橋梁研究室 専門分野:コンクリート工学 1988年高松工業高等専門学校土木工学科 卒業 同年日本道路公団入社。1997年より現職。